Vitalik Buterin & Ethereum

Many of you may not have heard of this 23 year old Russian-Canadian, Vitalik Buterin. He is one of those geniuses who started loving computing and Math from an early age. His parents immigrated to Canada from Russia when he was 3 years old. After attending a private high school in Toronto, he joined the University of Waterloo (my alma mater), but dropped out after getting the Peter Thiel fellowship of $100K to pursue his entrepreneurial work in cryptocurrency.

After trying to persuade the Bitcoin community for a scripting language which got no support, he decided to start a new platform to serve cryptocurrency plus any asset like a smart contract. His first seminal paper in 2013 laid the foundation and the same year he proposed the building of a new platform called Ethereum with a general scripting language. In early 2014, a Switzerland company called Ethereum Switzerland GMBH developed the first Ethereum software project. Finally in July-August of 2014, Ethereum launched a pre-sale of Ether tokens (its own cryptocurrency) to public and raised $14M. Ethereum belongs to the same family as the cryptocurrency Bitcoin, whose value has increased more than 1,000 percent in just the past year. Ethereum has its own currencies, most notably Ether, but the platform has a wider scope than just money.

You can think of my Ethereum address as having elements of a bank account, an email address and a Social Security number. For now, it exists only on my computer as an inert string of nonsense, but the second I try to perform any kind of transaction — say, contributing to a crowdfunding campaign or voting in an online referendum — that address is broadcast out to an improvised worldwide network of computers that tries to verify the transaction. The results of that verification are then broadcast to the wider network again, where more machines enter into a kind of competition to perform complex mathematical calculations, the winner of which gets to record that transaction in the single, canonical record of every transaction ever made in the history of Ethereum. Because those transactions are registered in a sequence of “blocks” of data, that record is called the blockchain. Many Bitcoin exchanges use the Ethereum platform.

A New York Times article in January said, “The true believers behind blockchain platforms like Ethereum argue that a network of distributed trust is one of those advances in software architecture that will prove, in the long run, to have historic significance. That promise has helped fuel the huge jump in cryptocurrency valuations. But in a way, the Bitcoin bubble may ultimately turn out to be a distraction from the true significance of the blockchain. The real promise of these new technologies, many of their evangelists believe, lies not in displacing our currencies but in replacing much of what we now think of as the internet, while at the same time returning the online world to a more decentralized and egalitarian system. If you believe the evangelists, the blockchain is the future. But it is also a way of getting back to the internet’s roots”.

Vitalik wrote the idea of Ethereum at age 19. He is the new-age Linus Torvalds who fathered Linux that became the de-facto operating system for the Internet developers.

Advertisements

IBM’s Neuromorphic Computing Project

The Neuromorphic Computing Project at IBM is a pioneer in next-generation chip technology. The project has received ~$70 million in research funding from DARPA (under SyNAPSE Program), US Department of Defense, US Department of Energy, and Commercial Customers. The ground-breaking project is multi-disciplinary, multi-institutional, and multi-national and has a world-wide scientific impact. The resulting architecture, technology, and ecosystem breaks path with the prevailing von Neumann architecture and constitutes a foundation for energy-efficient, scalable neuromorphic systems. The head of this project is Dr. Dharmendra Modha, IBM Fellow and chief scientist for IBM’s brain-inspired computing project.

So why is the Von Neumann architecture inadequate for brain-inspired computing? The Von Neumann model goes back to 1946 where it dealt with 3 things – the CPU, memory and a bus. You move data to and from memory. The bus connects the memory & CPU via computation. It becomes the bottleneck, and also sequentializes computation. So if you have to flip a single bit, you have to read that bit from memory and write it back.

The new architecture is radically different. The IBM project takes inspiration from the structure, dynamics, and behavior of the brain to see if they can optimize time, speed, and energy of computation. Co-locate memory and computation and slowly intertwine communication, just like how the brain does, then you can minimize the energy of moving bits from memory to computation. You can get event-driven computation rather than clock-driven computation, and you can compute only when information changes.

The Von Neumann paradigm is, by definition, a sequence of instructions interspersed with occasional if-then-else statements. Compare that to a neural network, where a neuron can reach out to up to 10,000 neighbors. The TrueNorth (IBM’s new chip) can reach out to up to 256, and the reason for that disparity is because it is silicon and not organic technology. But there’s a very high fan-out, and high fan-out is difficult to implement in a sequential architecture. An AI system IBM developed last year for Lawrence Livermore National Lab had 16 TrueNorth chips tiled in a 4-by-4 array. The chips are designed to be tiled, so scalability is built in as a design principle rather than as an afterthought.

In summary, the design points of the IBM project are as follows:

  • The Von Neumann architecture won’t be able to provide the massively parallel, fault-tolerant, power-efficient systems that will be needed to create to embed intelligence into silicon. Instead, IBM had to rethink processor design.
  • You can’t throw out the baby with the bathwater: even if you rethink underlying hardware design, you need to implement sufficiently abstracted software libraries to reduce the pain of the software developer so that he can program your chip.
  • You can achieve power efficiency by changing the way you build software and hardware to become active only when an event occurs; rather than tying computation to a series of sequential operations, you make it into a massively parallel job that runs only when the underlying system changes.

AI is getting notable success in the area of perception such as speech and image recognition. In the field of reinforcement learning and deep learning, the human brain becomes the primary inspiration. Hence the IBM Neuromorphic chip design becomes a significant foundational technology.

Chaos Engineering

This phrase is new and it originated at Netflix back in 2010. I was listening to Nora Jones, a Netflix engineer at the AWS re-Invent conference few weeks back, where she talked about this. The principle of Chaos goes like this, “Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s capability to withstand turbulent conditions in production.” Distributed systems have too many moving parts and failures can occur at various levels – hard disks can fail, the network can go down, a sudden surge in customer traffic can overload a functional component—the list goes on. All too often, these events trigger outages, poor performance, and other undesirable behaviors. Chaos Engineering is a method of experimentation on infrastructure that brings systemic weaknesses to light. This empirical process of verification leads to more resilient systems, and builds confidence in the operational behavior of those systems.

Netflix moved its operation to the cloud back in 2008. They started some form of resiliency testing since that time. They introduced Chaos Monkey that systematically turned off services in the production systems. Then came Chaos Kong for large scale failures like shutting off a whole data center. Another tool called FIT (Failure Injection Testing) was introduced to test all scenarios between the small (Chaos Monkey) and very large (Chaos Kong). All these experiments culminated into what is called Chaos Engineering, a discipline now used across many large companies such as Google, Amazon, Microsoft, etc.

Applying Chaos Engineering improves the resilience of a system. By designing and executing Chaos Engineering experiments, you will learn about weaknesses in your system that could potentially lead to outages that cause customer harm. You can then address those weaknesses proactively, going beyond the reactive processes that currently dominate most incident response models.

So what is the difference between Chaos Engineering (experimentation) and testing? In testing, an assertion is made: given specific conditions, a system will emit a specific output. Tests are typically binary, and determine whether a property is true or false. Strictly speaking, this does not generate new knowledge about the system, it just assigns valence to a known property of it. Experimentation generates new knowledge, and often suggests new avenues of exploration. Examples of input for chaos experiments could span from maxing out cpu cores on an Elasticserach cluster to partially deleting kafka topics over a variety of instances to recreate an issue that occured in production. Numerous experiments can be performed to understand system behavior ahead of time and take corrective actions.

At Google, Kripa Krishnan leads a team that constantly breaks the system. So a small team of testers from other big companies have started to work together to share best practices. These folks are currently working on ways to automate some of the tests. “Right now, scale is our problem. We are doing hundreds of tests, but I cannot scale my team to hundreds of people. So we are exploring automating some of this. How do you constantly cause damage so systems are constantly recovering?”

As distributed systems get more complex with thousands of microservices providing various functions, chaos engineering is emerging as a key practice to make these systems more resilient to failure.

Big Data & Analytics – what’s ahead?

Recently I read somewhere this statement – As we end 2017 and look ahead to 2018, topics that are top of mind for data professionals are the growing range of data management mandates, including the EU’s new General Data Protection Regulation that is directed at personal data and privacy, the growing role of artificial intelligence (AI) and machine learning in enterprise applications, the need for better security in light of the onslaught of hacking cases, and the ability to leverage the expanding Internet of Things.

Here are the key areas as we look ahead:

  • Business owners demand outcomes – not just a data lake to store all kinds of data in its native format and API’s.
  • Data Science must produce results – Play and Explore is not enough. Learn to ask the right questions. Visualization of analytics from search.
  • Everyone wants Real Time – Days and weeks too slow, need immediate actionable outcomes. Analytics & recommendations based on real time data.
  • Everyone wants AI (artificial intelligence) – Tell me what I don’t know.
  • Systems must be secure – no longer a mere platitude.
  • ML (machine learning) and IoT at massive scale – Thousands of ML models. Need model accuracy.
  • Blockchain – need to understand its full potential to business – since it’s not transformational, but a foundational technology shift.

In the area of big data, a combination of new and long-established technologies are being put to work. Hadoop and Spark are expanding their roles within organizations. NoSQL and NewSQL databases bring their own unique attributes to the enterprise, while in-memory capabilities (such as Redis) are increasingly being utilized to deliver insights to decision makers faster. And through it all, tried-and-true relational databases continue to support many of the most critical enterprise data environments.

Cloud becomes the de-facto deployment choice for both users and developers. Serverless technology with FaaS (Function as a Service) is getting rapid adoption amongst developers. According to IDC, enterprises are undergoing IT transformation as they rethink their business operations, including how they use information and what technology to deploy. In line with that transformation, nearly 80% of large organizations already have a hybrid cloud strategy in place. The modern application architecture, sometimes referred to as SMAC (social, mobile, analytics, cloud) is becoming standard everywhere.

The DBaaS (database as a service) is still not as widespread as other cloud services. Microsoft is arguably making the strongest explicit claim for a converged database system with its Azure Cosmo DB as DBaaS. Cosmo DB claims to support four data models – key-value, column-family, document, and graph. However, databases have been slower to migrate to the cloud than other elements of computing infrastructure mainly for security and performance reasons. But DBaaS adoption is poised to accelerate. Some of these cloud based DBaaS systems – Cosmo DB, Spanner from Google, and AWS DynamoDB – now offer significant advantages over their on-premise counterparts.

One thing for sure, big data and analytics will continue to be vibrant and exciting in 2018.

AWS re:Invent 2017

In a few decades when the history of computing will be written, a major section will be devoted to cloud computing. The headline of the first section would read something like this – How did a dot-com era book-selling company became the father of cloud computing? While the giants like IBM, HP, and Microsoft were sleeping, Amazon started a new business eleven years ago in 2006 called AWS (Amazon Web Services). I still remember the afternoon when I had spent couple of hours with the CTO of Amazon (not Werner Vogel, his predecessor, a dutch gentleman) back in 2004 discussing the importance of SOA (Service Oriented Architecture). When I asked why was he interested, he mentioned how CEO Jeff Bezos has given a marching order to monetize the under-utilized infrastructure in their data centers. Thus AWS arrived in 2006 with S3 for storage and EC2 for computing.

Advance the clock by 11 years. At this week’s AWS Re-Invent event in Las Vegas it was amazing to listen to Andy Jassy, CEO of AWS who gave a 2.5 hour keynote on how far AWS has come. There were 43,000 people attending this event (in its 6th year) and another 60,000 were tuned in via the web. AWS has a revenue run rate of $18B with a 42% Year-to-Year growth. It’s profit is over 60% thus contributing significantly to Amazon’s bottom line. It has hundreds of thousands of customers starting from majority web startups to Fortune 500 enterprise players in all verticals. It has the strongest partner ecosystem. Garter group said AWS has a market share of 44.1% (39% last year), larger than all others combined. Customers like Goldman Sachs, Expedia, and National Football League were on stage showing how they fully switched to AWS for all their development and production.

Andy covered four major areas – computing, database, analytics, and machine learning with many new announcement of services. AWS already offers over 100 services. Here is a brief overview.

  • Computing – 3 major areas: Instances of EC2 including new GPU processor for AI, Containers (services such as Elastic Container Services and new ones like EKS – Elastic Kubernetes Services), and Serverless (Function as a Service with its Lambda services). The last one, Serverless is gaining fast traction in just last 12 months.
  • Database – AWS is starting to give real challenge to incumbents like Oracle, IBM and Microsoft. It has three offerings – AWS Aurora RDBMS for transaction processing, DynamoDB and Redshift. Andy announced Aurora Multi-Master for replicated read and writes across data centers and zones. He claims it is the first RDBMS with scale-out across multiple data centers and is lot cheaper than Oracle’s RAC solution. They also announced Aurora Serverless for on-demand, auto-scaling app dev. For No-SQL, AWS has DynamoDB (key-value store). They also have Amazon Elastic Cache for in-memory DB. Andy announced Dynamo DB Global Tables as a fully-managed, multi-master, multi-region DB for customers with global users (such as Expedia). Another new service called Amazon Neptune was announced for highly connected data (fully managed Graph database). They also have Redshift for data warehousing and analytics.
  • Analytics – AWS provides Data Lake service on S3 which enables API access to any data in its native form. They have many services like Athena, Glue, Kinesis to access the data lake. Two new services were announced – S3 Select (a new API to select and retrieve S3 data from within an object), Glacier Select (access less frequently used data in the archives).
  • Machine Learning – Amazon claims it has been using machine learning for 20 years in its e-commerce business to understand user’s preferences. A new service was announced called Amazon Sagemaker which brings storage, data movement, management of hosted notebook, and ML algorithms like 10 top commonly used ones (eg. Time Series Forecasting). It also accommodates other popular libraries like Tensorflow, Apache MxNet, and Caffe2. Once you pick an algorithm, training is much easier with Sagemaker. Then with one-click, the deployment happens. Their chief AI fellow Dr. Matt Wood demonstrated on stage how this is all done. They also announced AWS DeepLens, a video camera for developers with a computer vision model. This can detect facial recognition and image recognition for apps. New services announced besides the above two are – Amazon Kinesis Video streams (video ingestion), Amazon Transcribe (automatic speech recognition), Amazon Translate (between languages), and Amazon Comprehend (fully managed NLP – Natural Language Processing).

It was a very impressive and powerful presentation and shows how deeply committed and dedicated the AWS team is. Microsoft Azure cloud, Google’s computing cloud, IBM’s cloud and Oracle’s cloud all seem way behind in terms of AWS’s breadth and depth. It will be to customer’s benefit to have couple of AWS alternatives as we march along the cloud computing highway. Who wants a single-vendor lock-in?

Meet the new richest man on earth

This morning Jeff Bezos beat his nemesis from the same town Bill Gates as the richest man on the planet with his worth exceeding $90B. This was due to a huge surge in Amazon’s stock price (over $128 rise) to $1100 plus today. Their 3Q results came out yesterday and Amazon grew its revenue by 34% and profits inched up as well. There were fears that heavy investments in new warehouses and hiring workers would push it to a loss. This year Amazon’s stock started at $750. What a run!

Here are the numbers. Revenue soared 34% to a record $43.74B, a first for a non-holiday period, as the internet retail giant spread its ambitions with the acquisition of Whole Foods Market Inc. and widened its lead in cloud computing. Profit increased 1.6% to $256M, despite the costs bulging by 35%, a five-year high. I was surprised to know that Amazon employs 541,900 people, an increase from last quarter’s 382,400. Roughly 87,000 employees were added from Whole Foods. Now Amazon commands some 43.5% of e-commerce sales this year, compared with 38.1% last year.

I remember during the dot.com crash, everyone wrote off Amazon. When they ridiculed Bezos for a no-profit company with a bleak future, he jokingly replied, ” I spell profit as ‘prophet'”. He has come a long way with his prophetic vision and masterful execution.

The best addition to Amazon’s two core businesses (books and e-commerce) was the introduction of AWS as the cloud computing infrastructure back in 2004. First came S3 (simple shared storage) when Bezos convinced start-up companies to rent storage at one-hundredth of the cost of buying from big vendors. Then EC2 (Elastic Computing Cloud) was added and that took off in a big way, especially with capital-starved startups with unpredictable computing needs. Pretty soon, Amazon took the credit of being the ‘father of cloud computing’ beating big incumbents like IBM, HP, etc. Now AWS is a huge business growing fast and bringing in about $16B revenue with over 60% profit. AWS is making a difference to the bottom line. Microsoft is trying hard to catch up with its Azure cloud and so is Google with its GCE (Google Computing Cloud). Today’s AWS is a very rich stack with its own database as a service (Redshift, Dynamo, and Aurora), elastic Map-Reduce, serverless offering with Lambda, and much more.There are predictions that AWS could one day be the biggest business for Amazon.

While the pacific north-west remains to be the home of the richest man on earth, the title shifts to Bezos from Gates.

Blockchain 101

There is a lot of noise on Blockchain these days. Back in May, 2015 The Economist wrote a whole special on Bockchain and it said, “The “blockchain” technology that underpins bitcoin, a sort of peer-to-peer system of running a currency, is presented as a piece of innovation on a par with the introduction of limited liability for corporations, or private property rights, or the internet itself”. It all started after the 2008 financial crisis, when a seminal paper written by Satoshi Nakamoto on Halloween day (Oct 31, 2008) caught the attention of many (the real identity of the author is still unknown). The name of the paper was “Bitcoin: A peer to peer electronic cash system”. Thus began a cash-less, bank-less world of money exchange over the internet using blockchain technology. Bitcoin’s value has exceeded $6000 and market cap is over $100B. VC’s are rushing to invest in cryptocurrency like never before.

The September 1, 2017 issue of Fortune magazine’s cover page screamed “Blockhain Mania”. The article said, “A blockchain is a kind of ledger, a table that businesses use to track credits and debits. But it’s not just any run-of-the-mill financial database. One of blockchain’s distinguishing features is that it concatenates (or “chains”) cryptographically verified transactions into sequences of lists (or “blocks”). The system uses complex mathematical functions to arrive at a definitive record of who owns what, when. Properly applied, a blockchain can help assure data integrity, maintain auditable records, and contracts into programmable software. It’s a ledger, but on the bleeding edge”.

So welcome to the new phase of network computing where we switch from “transfer of information” to “transfer of values”. Just as TCP/IP became the fundamental protocol for communication and helped create today’s internet with the first killer app Email (SMTP), blockchain will enable exchange of assets (the first app being Bitcoin for money). So get used to new terms like cryptocurrency, DLS (distributed ledger stack), nonce, ethereum, smart contracts, pseudo anonymity, etc. The “information internet” becomes the “value internet”. — Patrick Byrne, CEO of Overstock said, “Over the next decade, what the internet did to communications, blockchain is going to do to about 150 industries”. — In a recent article in Harvard Business Review, authors Joi Ito, Neha Narula, and Robleh Ali said, “The blockchain will do to the financial system what the internet did to media”.

The key elements of blockchain are the following:

  • Distributed Database – each party on a blockchain has access to entire DB and its complete history. No single party controls the data or the info. Each party can verify records without an intermediary.
  • Peer-to-Peer Transmission (P2P) – communication directly between peers instead of thru a central node.
  • Transparency with Pseudonymity – each transaction and associated value are visible to anyone with access to system. Each node/user has a unique 30-plus-character alphanumeric address. Users can choose to be anonymous or provide proof of identity. Transactions occur between blockchain addresses.
  • Irreversibility of records – once a transaction is entered in the DB, they can not be altered, because they are linked to every xaction record before them (hence the term ‘chain’).
  • Computational Logic – blockchain transactions can be tied to computational logic and in essence programmed.

The heart of the system is a distributed database that is write-once, read-many with a copy replicated at each node. It is transaction processing in a highly distributed network with guaranteed data integrity, security, and trust. Blockchain also provides automated, secure coordination system with remuneration and tracking. Even if it started with “money transfer” via Bitcoin, the underpinnings can be applied to any assets. The need for a central coordinating agency such as bank becomes unnecessary. Assets such as mortgages, bonds, stocks, loans, home titles, auto registries, birth and death certificates, passport, visa, etc. can all be exchanged without intermediaries. The Feb, 2017 HBR article said, “Blockchain is a foundational technology (not disruptive). It has the potential to create new foundations for our economic & social systems.”

We did not get into the depth of the technology here, but plenty of literature is available for you to read. Major vendors such as IBM, Microsoft, Oracle, HPE are offering blockchain as an infrastructure service for enterprise asset management.