Category Archives: AI

Amazon+Whole Foods – How to read this?

Last Thursday (June 15, 2017), Amazon decided to acquire Whole Foods for a whopping $13.7B ($42 per share, a 27% premium to its closing price). On Friday, stock prices of Walmart, Target, and Costco took a hit downwards, while Amazon shares went up by more than 2%. So why did Amazon buy Whole Foods? Clearly Amazon sees groceries as an important long-term driver of growth in its retail segment. What is funny is that a web pioneer with no physical retail outlet decided to get back to the brick-and-mortar model. Amazon has also started physical bookstores at a few cities. We have come full circle.

Amazon grocery business has focussed on Amazon Fresh subscription service so far to deliver online food orders. Amazon will eventually use the stores to promote private-label products, integrate and grow its AI powered Echo speakers, boost prime membership and entice more customers into the fold. Hence this acquisition is the start of a long term strategy. Amazon is known for its non-linear thinking. Just see how it started a brand new business with AWS about 12 years back and now it is a $14B business with a 50%+ margin. It commands a powerful leadership position in the cloud computing business and competitors like Microsoft Azure or Google’s GCE are trying hard to catch up.

The interesting thing to ponder is how the top tech companies are spreading their tentacles. This was a front-page article in today’s WSJ. Apple, a computer company that became a phone company, is now working on self-driving cars, TV programming, and augmented reality. It is also pushing into payments territory challenging the banks. Google parent Alphabet built Android which now runs most PC devices. It ate the maps industry; it’s working on internet-beaming balloons, energy-harvesting kites, and self-driving technologies. Facebook is creating drones, VR hardware, original TV shows, and even telepathic brain computers. Of course Elon Musk brings his tech notions to any market he pleases – finance, autos, energy, and aerospace.

What is special about Amazon is that it is willing to work on everyday problems. According to the author of the WSJ article, this may be the smarter move in the long run. While Google and Facebook have yet to drive significant revenue outside their core, Amazon has managed to create business after business that is profitable, or at least not a drag on the bottom line. The article ends with cautionary note, “Imagine a future in which Amazon, which already employs north of 340,000 people worldwide, is America’s biggest employer. Imagine we are all spending money at what’s essentially the company store, and when we get home we’re streaming Amazon’s media….”

With few tech giants controlling so many businesses, are we comfortable to get all our goods and services from the members of an oligopoly?

The end of Cloud Computing?

A provocative title for sure when everyone thinks we just started the era of cloud computing. I recently listened to a talk by Peter Levine, general partner at Andreessen Horowitz on this topic which makes a ton of sense. The proliferation of intelligent devices and the rise of IoT (Internet of Things) lead us to a new world beyond what we see today in cloud computing (in terms of scale).

I have said many times that the onset of cloud computing was like back to the future of centralized computing. We had IBM mainframes, dominating the centralized computing era during the 1960s and 1970s. The introduction of PCs created the world of client-server computing (remember the wintel duopoly?) from 1980s till 2000. Then the popularity of the mobile devices started the cloud era in 2005, thus taking us back to centralized computing again. The text message I send you does not go from my device to your device directly, but gets to a server somewhere in the cloud first and then to your phone. The trillions of smart devices forecasted to appear as sensors in automobiles, home appliances, airplanes, drones, engines, and almost any thing you can imagine (like in your shoe) will drastically change the computing paradigm again. Each of these “edge intelligent devices” can not go back and forth to the cloud for every interaction. Rather they would want to process data at the edge to cut down latency. This brings us back to a new form of “distributed computing” model – kind of back to a vastly expanded version of the “PC era”.

Peter emphasized that the cloud will continue to exist, but its role will change from being the central hub to a “learning center” where curated data from the edge (only relevant data) resides in the cloud. The learning gets pushed back to the edge for getting better at its job. The edge of the cloud does three things – sense, infer, and act. The sense level handles massive amount of data like in a self-driving car (10GB per mile), thus making it like a “data center on wheels”. The sheer volume of data is too much to push back to the cloud. The infer piece is all machine learning and deep learning to detect patterns, improve accuracy and automation. Finally, the act phase is all about taking actions in real-time. Once again, the cloud plays the central role as a “learning center” and the custodian of important data for the enterprise.

Given the sheer volume of data created, peer-to-peer networks will be utilized to lessen load on core network and share data locally. The challenge is huge in terms of network management and security. Programming becomes more data-centric, meaning less code and more math. As the processing power of the edge devices increases, the cost will come down drastically. I like his last statement that the entire world becomes the domain of IT meaning we will have consumer-oriented applications with enterprise-scale manageability.

This is exciting and scary. But whoever could have imagined the internet in the 1980s or the smartphone during the 1990s, let alone self-driving cars?

Secret of Sundar Pichai’s success

I watched Sundar Pichai’s recent interaction with the students at I.I.T. (Indian Institute of Technology) Kharagpur, India, where he graduated back in 1993. Besides our common country of birth, I had never heard of Sundar until his rapid rise at Google a few years back. I have never met him or listened to him at conferences. So this was the first time, I had a chance to listen to his remarks and his answers to many questions from the audience of 3500 students at his alma mater earlier this week.

Growing up not far from I.I.T. Kharagpur, I was very aware of this institution. It was the first I.I.T. in India established during the 1950s. Other I.I.T’s like at Kanpur, Delhi, Mumbai and Chennai came later. These were the original 5 Indian Institute of Technologies. Lately many new ones have been added.

Sundar did his undergraduate studies in Metallurgy (study about metals). Then how did he switch from that into software? That was one of the questions from a student. He said that he loved Fortran language during his student days and that love for programming continued. The message he was giving was for everyone to pursue their own interest & passion. He mentioned that unlike in India, students at US universities sometimes do not decide their majors, way into their 3rd or 4th year of studies. Sundar’s passion was to build products that would impact a very large number of global users. During his interview at Google, he was asked what he thought of Gmail, which he had never seen nor used. Then the fourth interviewer actually showed it to him. Subsequently, he gave his opinion to the remaining 3 interviewers on what he thought was wrong with Gmail and how to improve it. He emphasized time and again the need to step out of the comfort zone and get an all rounded experience. Today’s students need not be afraid to take some risks and be willing to fail.

Besides technical leadership, Sundar possesses an amazing quality; egoless-ness, so rare to find in Silicon Valley executive community. He said that he truly believes in empowering his team and letting them execute with full trust. This is easier said that done, based on my experience at IBM and Oracle. Large organizations suffer from ego-driven leadership causing great amount of friction and anguish. Sunder’s rise at Google was due to his amazing ability to get teams to work very effectively. From Search, he went to manage Chrome, then he was given Android. His ability to work thru the complexities of products, fiefdoms, and internal rivalries was so evident that he was elevated to the CEO position so quickly. Humility is his hallmark combined with clarity of vision and efficient execution.

He made an interesting comment about the vision at Google. Larry Page said that the moonshot projects are worthwhile because the bar is so high (no competition). Even if you fail, you are still ahead with your knowledge and experience.

It was fun listening to Sundar’s simple and honest answers & remarks.

The new Microsoft

Clearly Satya Nadella has made a huge difference at Microsoft since taking office in 2014. The stock in 2016 hit an all time high since 1999. So investors are happy. Here are the key changes he has made since taking the role as CEO:

  • Skipped Windows 9 and went straight from Windows 8 to Windows 10, a great release. However revenues from Window is declining with the reduction of PC sales.
  • Released Microsoft Office for iPad. Also releasing the Outlook product on iPhone & Android.
  • Embraced Linux by joining the Linux Foundation, previously anathema to Microsoft’s window-centric culture.
  • Spent $2.5B to buy Mojang, the studio behind hit game Minecraft.
  • Introduced Microsoft’s first laptop, The Surface Book.
  • Revealed Microsoft HoloLens, the super-futuristic holographic goggles.
  • Created the new partner program to provide Microsoft products on non-Windows platforms. Hired ex-Qualcomm exec Peggy Johnson to head the bus-dev group.
  • Enhanced company morale and employee excitement.
  • The biggest gamble was the purchase of Linked-In last June for a whopping $26.2B.

It’s important to understand the significance of the Linked-In purchase. Adam Rifkin (I worked with him twelve years back at KnowNow, a smart guy) recently wrote an article on this topic. I like his comment that in a world of machine learning, uniquely valuable data is the new network effect. The right kind of data is now the force multiplier that can catapult organizations past any competitors who lack equivalent data. So data is the new barrier to entry. Adam also makes a statement that the most valuable data is perishable and not static. Software is eating the world and AI is eating software meaning AI is eating data and popping out software.

Now let’s map what this means to the Linked-In purchase by Microsoft which sees the network effects of Linked-In’s data. What Google gets from search, Facebook gets from likes, and Amazon gets from shopping carts, Microsoft will get such insights from Linked-In’s data for its CRM services. Adam makes a point that the global CRM market in 2015 was worth $26.3B – almost exactly what Microsoft paid. It is the fastest growing area of enterprise software. Hence Marc Benioff of SalesForce was not very happy with this acquisition.

The new Microsoft is ready to fight the enterprise software battle with incumbents like SalesForce, Oracle, SAP and Workday.

The resurgence of AI/ML/DL

We have been seeing a sudden rise in the deployment of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). It looks like the long “AI winter” is finally over.

  • According to IDC, AI-related hardware, software and services business will jump from $8B this year to $47B by 2020.
  • I have also read comments like, “AI is like the Internet in the mid 1990s and it will be pervasive this time”.
  • According to Andrew Ng, chief scientist at Baidu, “AI is the new electricity. Just as 100 years ago electricity transformed industry after industry, AI will now do the same.”
  • Peter Lee, co-head at Microsoft Research said,  “Sales teams are using neural nets to recommend which prospects to contact next or what kind of products to recommend.”
  • IBM Watson used AI in 2011, not DL. Now all 30 components are augmented by DL (investment from $500M – $6B in 2020).
  • Google had 2 DL projects in 2012, now it is more than 1000 (Search, Android, Gmail, Translation, Maps, YouTube, Self-driving cars,..).

It is interesting to note that AI was mentioned by Alan Turing in a paper he wrote back in 1950 to suggest that there is possibility to build machines with true intelligence. Then in 1956, John McCarthy organized a conference at Dartmouth and coined the phrase Artificial Intelligence. Much of the next three decades did not see much activity and hence the phrase “AI Winter” was coined. Around 1997, IBM’s Deep Blue won the chess match against Kasparov. During the last few years, we saw deployments such as Apple’s Siri, Microsoft’s Cortana, and IBM’s Watson (beating Jeopardy game show champions in 2011). In 2014, DeepMind team used a deep learning algorithm to create a program to win Atari games.

During last 2 years, use of this technology has accelerated greatly. The key players pushing AI/ML/DL are – Nvidia, Baidu, Google, IBM, Apple, Microsoft, Facebook, Twitter, Amazon, Yahoo, etc. Many new players have appeared – DeepMind, Numenta, Nervana, MetaMind, AlchemyAPI, Sentient, OpenAI, SkyMind, Cortica, etc. These companies are all targets of acquisition by the big ones. Sunder Pichai of Google says, “Machine learning is a core transformative way in which we are rethinking everything we are doing”. Google’s products deploying these technologies are – Visual Translation, RankBrain, Speech Recognition, Voicemail Transcription, Photo Search, Spam Filter, etc.

AI is the broadest term, applying to any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning. The subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience is machine learning. A subset of machine learning called deep learning is composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multi-layered neural networks to vast amounts of data.

I think the resurgence is a result of the confluence of several factors, like advanced chip technology such as Nvidia Pascal GPU architecture or IBM TrueNorth (brain-inspired computer chip), software architectures like microservice containers, ML libraries, and data analytics tool kits. Well known academia are heavily being recruited by companies – Geoffrey Hinton of University of Toronto (Google), Yann LeCun of New York University (Facebook), Andrew Ng of Stanford (Baidu), Yoshua Bengio of University of Montreal, etc.

The outlook of AI/ML/DL is very bright and we will see some real benefits in every business sector.