Category Archives: IBM

Crypto Hype vs. Blockchain

There is a lot of crypto hype these days from crypto currencies like Bitcoin to fundraising efforts like ICO (Initial Coin Offering) similar to an IPO. All this noise has obscured the real benefits of the underlying technology – Blockchain. The Internet brought us the “exchange of information” over last 3 decades. Blockchain will give us the new era of “exchange of values” or “exchange of assets” without an intermediary via highly secure transactions in a peer to peer network. New ways of transferring real estate titles, managing cargo on shipping vehicles, guaranteeing the safety of food we eat and much more mundane activities will be enabled by Blockchain. An article in today’s WSJ by Christopher Mims covers this in more detail.

Briefly Blockchain is essentially a secure database (or ledger) spread across multiple computers. Everybody has the same record of all transactions, so tampering with one instance of it will be meaningless. “Crypto” describes the cryptography that underlies it, which allows agents to securely interact (e.g. transfer assets) while also guaranteeing that once a transaction has been made, the Blockchain keeps an immutable record of it. This technology is well suited to transactions that require trust and a permanent record for traceability. It also requires the cooperation of many different parties. Here are some examples of actual deployment of Blockchain so far:

  • At Walmart 1.1 million items are on Blockchain helping the company to trace the item’s journey from manufacturer to store shelf. Global shipping company Maersk is tracking shipping containers making it faster and easier to transfer them and get them thru customs. Other companies using Blockchain technology for tracking are Kroger, Nestle, Tyson Foods and Unilever. In all these cases, IBM is providing the Blockchain technology.
  • CartaSense, an Israeli company uses Blockchain database for its customers to track every stage of the journey of a package, pallet or shipping container.
  • Everledge, a company started in 2014 uses a Blockchain-based registry of every certified diamond in the world (already 2.2. million in its registry). By recording 40 different measures of each stone, it is able to trace the journey of a stone from its source to the final sale to a customer.
  • Dubai has declared its goal to make itself a Blockchain powered government in the world by 2020. They want to streamline real estate transactions for faster and easier transfer of property titles. Other assets like birth/death certificates, passports, visa, etc. can also be managed at low cost with better efficiency.

It is a bit early to claim that Blockchain will revolutionize every industry including government, but it has that potential. It poses a tremendous challenge for the hackers to break into. It can impact on how we vote to whom we connect to what we buy.

Advertisements

The New AI Economy

The convergence of technology leaps, social transformation, and genuine economic needs is catapulting AI (Artificial Intelligence) from its academic roots & decades of inertia to the forefront of business and industry. There has been a growing noise since last couple of years on how AI and its key subsets like Machine Learning and Deep Learning will affect all walks of life. Another phrase “Pervasive AI” is becoming part of our tech lexicon after the popularity of Amazon Echo and Google Home devices.

So what are the key factors pushing this renaissance of AI? We can quickly list them here:

  • Rise of Data Science from the basement to the boardroom of companies. Everyone saw the 3V’s of Big Data (volume, velocity, and variety). Data is called by many names – oxygen, the new oil, new gold, or the new currency.
  • Open source software such as Hadoop sparked this revolution in analytics using lots of unstructured data. The shift from retroactive to more predictive and prescriptive analytics is growing, for actionable business insights. Real-time BI is also taking a front seat.
  • Arrival of practical frameworks for handling big data revived AI (Machine Learning and Deep Learning) which fed happily on big data.
  • Existing CPU’s were not powerful for the fast processing needs of AI. Hence GPU (Graphical Processing Units) offered faster and more powerful chips. NVIDIA provided a positive force in this area. It’s ability to provide a full range of components (systems, servers, devices, software, and architecture) is making NVIDIA an essential player in the emerging AI economy. IBM’s neuromorphic computing project provides notable success in the area of perception, speech and image recognition.

Leading software vendors such as Google have numerous projects on AI ranging from speech and image recognition, language translation, and varieties of pattern matching. Facebook, Amazon, Uber, Netflix, and many others are racing to deploy AI into their products.

Paul Allen, co-founder of Microsoft is pumping $125M into his research lab Allen Institute of AI. The focus is to digitize common sense. Let me quote from today’s New York Times, “Today, machines can recognize nearby objects, identify spoken words, translate one language into another and mimic other human tasks with an accuracy that was not possible just a few years ago. These talents are readily apparent in the new wave of autonomous vehicles, warehouse robotics, smartphones and digital assistants. But these machines struggle with other basic tasks. Though Amazon’s Alexa does a good job of recognizing what you say, it cannot respond to anything more than basic commands and questions. When confronted with heavy traffic or unexpected situations, driverless cars just sit there”. Paul Allen added, “To make real progress in A.I., we have to overcome the big challenges in the area of common sense”.

Welcome to the new AI economy!

IBM’s Neuromorphic Computing Project

The Neuromorphic Computing Project at IBM is a pioneer in next-generation chip technology. The project has received ~$70 million in research funding from DARPA (under SyNAPSE Program), US Department of Defense, US Department of Energy, and Commercial Customers. The ground-breaking project is multi-disciplinary, multi-institutional, and multi-national and has a world-wide scientific impact. The resulting architecture, technology, and ecosystem breaks path with the prevailing von Neumann architecture and constitutes a foundation for energy-efficient, scalable neuromorphic systems. The head of this project is Dr. Dharmendra Modha, IBM Fellow and chief scientist for IBM’s brain-inspired computing project.

So why is the Von Neumann architecture inadequate for brain-inspired computing? The Von Neumann model goes back to 1946 where it dealt with 3 things – the CPU, memory and a bus. You move data to and from memory. The bus connects the memory & CPU via computation. It becomes the bottleneck, and also sequentializes computation. So if you have to flip a single bit, you have to read that bit from memory and write it back.

The new architecture is radically different. The IBM project takes inspiration from the structure, dynamics, and behavior of the brain to see if they can optimize time, speed, and energy of computation. Co-locate memory and computation and slowly intertwine communication, just like how the brain does, then you can minimize the energy of moving bits from memory to computation. You can get event-driven computation rather than clock-driven computation, and you can compute only when information changes.

The Von Neumann paradigm is, by definition, a sequence of instructions interspersed with occasional if-then-else statements. Compare that to a neural network, where a neuron can reach out to up to 10,000 neighbors. The TrueNorth (IBM’s new chip) can reach out to up to 256, and the reason for that disparity is because it is silicon and not organic technology. But there’s a very high fan-out, and high fan-out is difficult to implement in a sequential architecture. An AI system IBM developed last year for Lawrence Livermore National Lab had 16 TrueNorth chips tiled in a 4-by-4 array. The chips are designed to be tiled, so scalability is built in as a design principle rather than as an afterthought.

In summary, the design points of the IBM project are as follows:

  • The Von Neumann architecture won’t be able to provide the massively parallel, fault-tolerant, power-efficient systems that will be needed to create to embed intelligence into silicon. Instead, IBM had to rethink processor design.
  • You can’t throw out the baby with the bathwater: even if you rethink underlying hardware design, you need to implement sufficiently abstracted software libraries to reduce the pain of the software developer so that he can program your chip.
  • You can achieve power efficiency by changing the way you build software and hardware to become active only when an event occurs; rather than tying computation to a series of sequential operations, you make it into a massively parallel job that runs only when the underlying system changes.

AI is getting notable success in the area of perception such as speech and image recognition. In the field of reinforcement learning and deep learning, the human brain becomes the primary inspiration. Hence the IBM Neuromorphic chip design becomes a significant foundational technology.

Meet the new richest man on earth

This morning Jeff Bezos beat his nemesis from the same town Bill Gates as the richest man on the planet with his worth exceeding $90B. This was due to a huge surge in Amazon’s stock price (over $128 rise) to $1100 plus today. Their 3Q results came out yesterday and Amazon grew its revenue by 34% and profits inched up as well. There were fears that heavy investments in new warehouses and hiring workers would push it to a loss. This year Amazon’s stock started at $750. What a run!

Here are the numbers. Revenue soared 34% to a record $43.74B, a first for a non-holiday period, as the internet retail giant spread its ambitions with the acquisition of Whole Foods Market Inc. and widened its lead in cloud computing. Profit increased 1.6% to $256M, despite the costs bulging by 35%, a five-year high. I was surprised to know that Amazon employs 541,900 people, an increase from last quarter’s 382,400. Roughly 87,000 employees were added from Whole Foods. Now Amazon commands some 43.5% of e-commerce sales this year, compared with 38.1% last year.

I remember during the dot.com crash, everyone wrote off Amazon. When they ridiculed Bezos for a no-profit company with a bleak future, he jokingly replied, ” I spell profit as ‘prophet'”. He has come a long way with his prophetic vision and masterful execution.

The best addition to Amazon’s two core businesses (books and e-commerce) was the introduction of AWS as the cloud computing infrastructure back in 2004. First came S3 (simple shared storage) when Bezos convinced start-up companies to rent storage at one-hundredth of the cost of buying from big vendors. Then EC2 (Elastic Computing Cloud) was added and that took off in a big way, especially with capital-starved startups with unpredictable computing needs. Pretty soon, Amazon took the credit of being the ‘father of cloud computing’ beating big incumbents like IBM, HP, etc. Now AWS is a huge business growing fast and bringing in about $16B revenue with over 60% profit. AWS is making a difference to the bottom line. Microsoft is trying hard to catch up with its Azure cloud and so is Google with its GCE (Google Computing Cloud). Today’s AWS is a very rich stack with its own database as a service (Redshift, Dynamo, and Aurora), elastic Map-Reduce, serverless offering with Lambda, and much more.There are predictions that AWS could one day be the biggest business for Amazon.

While the pacific north-west remains to be the home of the richest man on earth, the title shifts to Bezos from Gates.

Serverless, FaaS, AWS Lambda, etc..

If you are part of the cloud development community, you certainly know about “serverless computing”, almost a misnomer. Because it implies there are no servers which is untrue. However the servers are hidden from the developers. This model eliminates operational complexity and increases developer productivity.

We came from monolithic computing to client-server to services to microservices to serverless model. In other words, our systems have slowly “dissolved” from monolithic to function-by-function. Software is developed and deployed as individual functions – a first-class object and cloud runs it for you. These functions are triggered by events which follows certain rules. Functions are written in fixed set of languages, with a fixed set of programming model and cloud-specific syntax and semantics. Cloud-specific services can be invoked to perform complex tasks. So for cloud-native applications, it offers a new option. But the key question is what should you use it for and why.

Amazon’s AWS, as usual, spearheaded this in 2014 with a engine called AWS Lambda. It supports Node, Python, C# and Java. It uses AWS API triggers for many AWS services. IBM offers OpenWhisk as a serverless solution that supports Python, Java, Swift, Node, and Docker. IBM and third parties provide service triggers. The code engine is Apache OpenWhisk. Microsoft provides similar function in its Azure Cloud function. Google cloud function supports Node only and has lots of other limitations.

This model of computing is also called “event-driven” or FaaS (Function as a Service). There is no need to manage provisioning and utilization of resources, nor to worry about availability and fault-tolerance. It relieves the developer (or devops) from managing scale and operations. Therefore, the key marketing slogans are event-driven, continuous scaling, and pay by usage. This is a new form of abstraction that boils down to function as the granular unit.

At the micro-level, serverless seems pretty simple – just develop a procedure and deploy to the cloud. However, there are several implications. It imposes a lot of constraints on developers and brings load of new complexities plus cloud lock-in. You have to pick one of the cloud providers and stay there, not easy to switch. Areas to ponder are cost, complexity, testing, emergent structure, vendor dependence, etc.

Serverless has been getting a lot of attention in last couple of years. We will wait and see the lessons learnt as more developers start deploying it in real-world web applications.

The resurgence of AI/ML/DL

We have been seeing a sudden rise in the deployment of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). It looks like the long “AI winter” is finally over.

  • According to IDC, AI-related hardware, software and services business will jump from $8B this year to $47B by 2020.
  • I have also read comments like, “AI is like the Internet in the mid 1990s and it will be pervasive this time”.
  • According to Andrew Ng, chief scientist at Baidu, “AI is the new electricity. Just as 100 years ago electricity transformed industry after industry, AI will now do the same.”
  • Peter Lee, co-head at Microsoft Research said,  “Sales teams are using neural nets to recommend which prospects to contact next or what kind of products to recommend.”
  • IBM Watson used AI in 2011, not DL. Now all 30 components are augmented by DL (investment from $500M – $6B in 2020).
  • Google had 2 DL projects in 2012, now it is more than 1000 (Search, Android, Gmail, Translation, Maps, YouTube, Self-driving cars,..).

It is interesting to note that AI was mentioned by Alan Turing in a paper he wrote back in 1950 to suggest that there is possibility to build machines with true intelligence. Then in 1956, John McCarthy organized a conference at Dartmouth and coined the phrase Artificial Intelligence. Much of the next three decades did not see much activity and hence the phrase “AI Winter” was coined. Around 1997, IBM’s Deep Blue won the chess match against Kasparov. During the last few years, we saw deployments such as Apple’s Siri, Microsoft’s Cortana, and IBM’s Watson (beating Jeopardy game show champions in 2011). In 2014, DeepMind team used a deep learning algorithm to create a program to win Atari games.

During last 2 years, use of this technology has accelerated greatly. The key players pushing AI/ML/DL are – Nvidia, Baidu, Google, IBM, Apple, Microsoft, Facebook, Twitter, Amazon, Yahoo, etc. Many new players have appeared – DeepMind, Numenta, Nervana, MetaMind, AlchemyAPI, Sentient, OpenAI, SkyMind, Cortica, etc. These companies are all targets of acquisition by the big ones. Sunder Pichai of Google says, “Machine learning is a core transformative way in which we are rethinking everything we are doing”. Google’s products deploying these technologies are – Visual Translation, RankBrain, Speech Recognition, Voicemail Transcription, Photo Search, Spam Filter, etc.

AI is the broadest term, applying to any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning. The subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience is machine learning. A subset of machine learning called deep learning is composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multi-layered neural networks to vast amounts of data.

I think the resurgence is a result of the confluence of several factors, like advanced chip technology such as Nvidia Pascal GPU architecture or IBM TrueNorth (brain-inspired computer chip), software architectures like microservice containers, ML libraries, and data analytics tool kits. Well known academia are heavily being recruited by companies – Geoffrey Hinton of University of Toronto (Google), Yann LeCun of New York University (Facebook), Andrew Ng of Stanford (Baidu), Yoshua Bengio of University of Montreal, etc.

The outlook of AI/ML/DL is very bright and we will see some real benefits in every business sector.

Linux & Cloud Computing

While reading the latest issue of the Economist, I was reminded that August 25th. marks an important anniversary for two key events:  25 years back, on August 25, 1991, Linus Torvalds launched a new operating system called Linux and on the same day in 2006, Amazon under the leadership of Andy Jesse launched the beta version of Elastic Computing Cloud (EC2), the central piece of Amazon Web Services (AWS).

The two are very interlinked. Linux became the world’s most used piece of software of its type. Of course Linux usage soared due to backers like HP, Oracle, and IBM to combat the Windows force. Without open-source programs like Linux, cloud computing would not have happened. Currently 1500 developers contribute to each new version of Linux. AWS servers deploy Linux heavily. Being first to succeed on a large scale allowed both Linux and AWS to take advantage of the network effect, which makes popular products even more entrenched.

Here are some facts about AWS. It’s launch back in 2006 was extremely timely, just one year before the smartphones came about. Apple launched its iPhone in 2007 which ushered the app economy. AWS became the haven for start-ups making up nearly two-third of its customer base (estimated at 1 million). According to Gartner Group, the cloud computing market is at $205B in 2016, which is 6% of the world’s IT budget of $3.4 trillion. This number will grow to $240B next year. No wonder, Amazon is reaping the benefits – over past 12 months, AWS revenue reached $11B with a margin of over 50%. During the last quarter, AWS sales were 3 times more than the nearest competitor, Microsoft Azure. AWS has ten times more computing capacity than the next 14 cloud providers combined. We also saw the fate of Rackspace last week (acquired by a private equity firm). Other cloud computing providers like Microsoft Azure, Google Cloud, and IBM (acquired SoftLayer in 2013) are struggling to keep up with AWS.

The latest battleground in cloud computing is data. AWS offers Aurora and Redshift in that space. It also started a new services called Snowball, a suitcase-sized box of digital memory which can store mountains of data in the AWS cloud (interesting challenge to Box and Dropbox). IBM bought Truven Health Analytics which keeps data on 215m patients in the healthcare industry.

The Economist article said, “AWS could end up dominating the IT industry just as IBM’s System/360, a family of mainframe computers did until the 1980s.”       I hope it’s not so and we need serious competition to AWS for customer’s benefits. Who wants a single-vendor “lock-in”? Microsoft’s Azure seems to be moving fast. Let us hope IBM, Google, and Oracle move very aggressively offering equivalent or better alternatives to Amazon cloud services.