Monthly Archives: July 2017

Splice Machine – What is it?

Those of you who have never heard of Splice Machine, don’t worry. You are in the company of many. So I decided to listen to a webinar last week that said the following in its announcement: learn about benefits of a modern IoT application platform that can capture, process, store, analyze and act on the large streams of data generated by IoT devices. The demonstration will include:

  • High Performance Data Ingestion
  • Analytics and Transformation on Data-In-Motion
  • Relational DBMS, Supporting Hybrid OLTP and OLAP Processing
  • In-Memory and Non-Volatile, Row-based and Columnar Storage mechanisms
  • Machine Learning to support decision making and problem resolution

That was a tall order. Gartner has a new term HTAP – Hybrid Transactional and Analytical Processing. Forrester uses “Translytical” to describe this platform where you could do both OLTP and OLAP. I had written a blog on Translytical database almost two years back. So I did attend the webinar and it was quite impressive. The only confusion was the liberal use of IoT in its marketing slogan. By that they want to emphasize “streaming data” (ingest, store, manage).

In Splice Machine’s website, you see four things: Hybrid RDBMS, ANSI SQL, ACID Transactions, and Real-Time Analytics. A white paper advertisement says, “Your IoT applications deserve a better data platform”. In looking at the advisory board members, I recognized 3 names – Roger Bamford, ex-Oracle and an investor, Ken Rudin, ex-Oracle, and Marie-Anne Niemet, ex-TimeTen. The company is funded by Mohr Davidow Ventures, and Interwest Partners amongst others.

There is a need for bringing together the worlds of OLTP (Transaction workloads) and Analytics or OLAP workloads into a common platform. They have been separated for decades and that’s how the Data Warehouse, MDM, OLAP cubes, etc. got started. The movement of data between the OLTP world and OLAP has been handled by ETL vendors such as Informatica. With the popularity of Hadoop, the DW/Analytics world is crowded with terms like Data Lake, ELT (first load, then transform), Data Curation, Data Unification, etc. A new architecture called Lambda (not to be confused with AWS Lambda for serverless computing) claims to unify the two worlds – OLTP and real-time streaming and analytics.

Into this world, comes Splice Machine with its scale-out data platform. You can do your standard ACID-compliant OLTP processing, data ingestion via Spark streaming and Kafka topics, query processing via ANSI SQL, and get your analytical workload without ETL. They even claim support of procedural language like PL/SQL for Oracle data. With their support of machine learning, they demonstrated predictive analytics. The current focus is on verticals like Healthcare, Telco, Retail, and Finance (Wells fargo), etc.

In the cacophony of Big Data and IoT noise, it is hard to separate facts from fiction. But I do see a role for a “unified” approach like Splice Machine. Again, the proof is always in the pudding – some real-life customer deployment scenarios with performance numbers will prove the hypothesis and their claim of 10x faster speed with one-fourth the cost.

Apache Drill + Arrow = Dremio

A new company just emerged from stealth mode yesterday, called Dremio, backed by Redpoint and Lightspeed in a Series A funding of $10m back in 2015. The founders came from MapR, but were active in Apache projects like Drill and Arrow. The same VC’s backed MapR and had the Dremio founders work out of their facilities during the stealth phase. Now the company has around 50 people in their Mountainview, California office.

Apache Drill acts as a single SQL engine that, in turn, can query and join data from among several other systems. Drill can certainly make use of an in-memory columnar data standard. But while Dremio was still in stealth, it wasn’t immediately obvious what Drill’s strong intersection with Arrow might be. But yesterday the company launched a namesake product that also acts as a single SQL engine that can query and join data from among several other systems, and it accelerates those queries using Apache Arrow. So it is a combo of (Drill + Arrow): schema-free SQL for variety of data sources plus a columnar in-memory analytics execution engine.

Dremio believes that BI today involves too many layers. Source systems, via ETL processes, feed into data warehouses, which may then feed into OLAP cubes. BI tools themselves may add another layer, building their own in-memory models in order to accelerate query performance. Dremio thinks that’s a huge mess and disintermediates things by providing a direct bridge between BI tools and the source system they’re querying. The BI tools connect to Dremio as if it were a primary data source, and query it via SQL. Dremio then delegates the query work to the true back-end systems through push-down queries that it issues. Dremio can connect to relational databases (DB2, Oracle, SQL Server, MySQL, PostgreSQL), NoSQL stores (MongoDB, Amazon Redshift, HBase, MapR-FS), Hadoop, cloud blob stores like S3, and ElasticSearch.

Here’s how it works: all data pulled from the back-end data sources is represented in memory using Arrow. Combined with vectorized (in-CPU parallel processing) querying, this design can yield up to a 5x performance improvement over conventional systems (company claims). But a perhaps even more important optimization is Dremio’s use of what it calls “Reflections,” which are materialized data structures that optimize Dremio’s row and aggregation operations. Reflections are sorted, partitioned, and indexed, stored as files on Parquet disk, and handled in-memory as Arrow-formatted columnar data. This sounds similar to ROLAP aggregation tables).

Andrew Brust from ZDNet said, “While Dremio’s approach to this is novel, and may break a performance barrier that heretofore has not been well-addressed, the company is nonetheless entering a very crowded space. The product will need to work on a fairly plug-and-play basis and live up to its performance promises, not to mention build a real community and ecosystem. These are areas where Apache Drill has had only limited success. Dremio will have to have a bigger hammer, not just an Arrow”.

Serverless, FaaS, AWS Lambda, etc..

If you are part of the cloud development community, you certainly know about “serverless computing”, almost a misnomer. Because it implies there are no servers which is untrue. However the servers are hidden from the developers. This model eliminates operational complexity and increases developer productivity.

We came from monolithic computing to client-server to services to microservices to serverless model. In other words, our systems have slowly “dissolved” from monolithic to function-by-function. Software is developed and deployed as individual functions – a first-class object and cloud runs it for you. These functions are triggered by events which follows certain rules. Functions are written in fixed set of languages, with a fixed set of programming model and cloud-specific syntax and semantics. Cloud-specific services can be invoked to perform complex tasks. So for cloud-native applications, it offers a new option. But the key question is what should you use it for and why.

Amazon’s AWS, as usual, spearheaded this in 2014 with a engine called AWS Lambda. It supports Node, Python, C# and Java. It uses AWS API triggers for many AWS services. IBM offers OpenWhisk as a serverless solution that supports Python, Java, Swift, Node, and Docker. IBM and third parties provide service triggers. The code engine is Apache OpenWhisk. Microsoft provides similar function in its Azure Cloud function. Google cloud function supports Node only and has lots of other limitations.

This model of computing is also called “event-driven” or FaaS (Function as a Service). There is no need to manage provisioning and utilization of resources, nor to worry about availability and fault-tolerance. It relieves the developer (or devops) from managing scale and operations. Therefore, the key marketing slogans are event-driven, continuous scaling, and pay by usage. This is a new form of abstraction that boils down to function as the granular unit.

At the micro-level, serverless seems pretty simple – just develop a procedure and deploy to the cloud. However, there are several implications. It imposes a lot of constraints on developers and brings load of new complexities plus cloud lock-in. You have to pick one of the cloud providers and stay there, not easy to switch. Areas to ponder are cost, complexity, testing, emergent structure, vendor dependence, etc.

Serverless has been getting a lot of attention in last couple of years. We will wait and see the lessons learnt as more developers start deploying it in real-world web applications.