Monthly Archives: May 2017

A conference in Bangalore

I was invited to speak at a conference called Solix Empower 2017 held in Bangalore, India on April 28th, 2017. It was an interesting experience. The conference focused on Big Data, Analytics, and Cloud. Over 800 people attended the one-day event with keynotes and parallel tracks on wide-ranging subjects.

I did three things. First, I was part of the inaugural keynote where I spoke on “Data as the new Oxygen” showing the emergence of data as a key platform for the future. I emphasized the new architecture of containers and micro-services on which are machine learning libraries and analytic tool kits to build modern big data applications.

Then I moderated two panels. The first was titled, ” The rise of real-time data architecture for streaming applications” and the second one was called, “Top data governance challenges and opportunities”. In the first panel, the members came from Hortonworks, Tech Mahindra, and ABOF (Aditya Birla Fashion). Each member described the criticality of real-time analytics where trends/anomalies are caught on the fly and action is taken immediately in a matter of seconds/minutes. I learnt that for online e-commerce players like ABOF, a key challenge is identifying customers most likely to refuse goods delivered at their door (many do not have credit cards, hence there is COD or cash on delivery). Such refusal causes major loss to the company. They do some trend analysis to identify specific customers who are likely to behave that way. By using real-time analytics, ABOF has been able to reduce such occurrences by about 4% with significant savings. The panel also discussed technologies for data ingestion, streaming, and building stateful apps. Some comments were made on combining Hadoop/EDW(OLAP) plus streaming(OLTP) into one solution like the Lambda architecture.

The second panel on data governance had members from Wipro, Finisar, Solix and Bharti AXA Insurance. These panelists agreed that data governance is no longer viewed as the “bureaucratic police and hence universally disliked” inside the company and it is taken seriously by the upper management. Hence policies for metadata management, data security, data retirement, and authorization are being put in place. Accuracy of data is a key challenge. While organizational structure for data governance (like a CDO, chief data officer) is still evolving, there remains many hard problems (specially for large companies with diverse groups).

It was interesting to have executives from Indian companies reflect on these issues that seem no different than what we discuss here. Big Data is everywhere and global.

Advertisements